Подписываемся на VK

Ежедневные новости, видео и приколы...

YouTube канал

Подбор моторов

TOP статьи

Вход




RC Магазины





Home Изготовление авиамоделей Разработка авиамоделей Расчет САХ эллиптического крыла. Разночтения
Расчет САХ эллиптического крыла. Разночтения
Изготовление авиамоделей - Разработка авиамоделей
Автор: Administrator   

Юрий Арзуманян

(yuri_la)

Данная статья является продолжением «трилогии», посвященной расчету Средней Аэродинамической Хорды (САХ) крыла. Она была начата статьей «Расчет САХ крыла с криволинейным контуром» и была продолжена в статье «Расчет САХ. Второе приближение». Затем последовала завершающая, как мне тогда казалось, статья (САХ и геометрия авиамодели).

Честно говоря, я считал, что на этом тема исчерпана, и я не собирался к ней больше возвращаться. Однако, в комментариях к первой статье один из участников форума – Сергей Тимофеев (ему спасибо!) обратил внимание на имеющееся расхождение в значениях САХ для эллиптического крыла, которое дано по выведенным мной формулам. Меня это, конечно, «зацепило» и я снова взялся за тему.


Проверив еще раз свои выкладки, я ошибки не нашел. Более того, я полез на зарубежные сайты для поиска дополнительных материалов и расчетов. Нашел, что и там есть некоторый разнобой в понимании по данному вопросу. Вот, например, вывод уравнений для МАС на одном из форумов (в английском MAC – Mean Aerodynamic Chord). Автор – Серж Краусс (Serge Krauss). Здесь полуразмах обозначен b и он равен 10. Корневая хорда С(0) равна 5.

35222.jpg

В моих выкладках САХ = 0,905 Н, где Н – корневая хорда. То есть если Н = 5, то 4,5274 от пяти как раз и будет примерно 0,905. Однако Серж Краусс поставил здесь знак неравенства. Почему это? После долгих размышлений я, наконец, понял, в чем заключаются расхождения.

Ниже я буду пользоваться теми же обозначениями переменных, которыми пользовался в самой первой статье цикла. Итак, в уравнениях для расчета расстояния до САХ от корневой хорды расхождений нет. Разница только в обозначениях.

У меня:

Здесь L – полуразмах крыла.

У Сержа:

Полуразмах крыла b у него равен 10-ти, поэтому в пределах интегрирования стоит эта цифра. Поперечная ось системы координат у него обозначена y, у меня z. Соответственно функции: у него C(y), а у меня f(z). A – площадь консоли крыла (у меня обозначена S). Результат интегрирования, разумеется, одинаков. Однако дальше, когда он подставляет полученное значение y в уравнение эллипса, то оказывается, что точка на эллипсе, через которую должна проходить САХ, дает другое, большее значение САХ, чем полученное им по формуле для ее расчета! Вот почему он и поставил знак неравенства.

Так в чем же дело? А дело в том, что во всех учебниках и книгах на эту тему используется формула, приведенная, в числе прочего, и в нашем ГОСТ 22833-77.

Эта формула в моих обозначениях такова:

Так вот, если вычислить этот интеграл (он, кстати, вычисляется проще – не надо никаких замен переменных), то получится следующее выражение для САХ эллиптического крыла:

А при подстановке Lcax (у Сержа это d) в уравнение эллипса получится:

Итак, в первом случае это приблизительно:

Во втором:

Разница хоть и небольшая, но она есть. Теперь важно показать на рисунке (Рис. 1), как на практике выглядят эти расхождения. Если пользоваться той логикой, которой я руководствовался при написании этих статей, то вопросов и противоречий никаких не возникает. САХ крыла находится на правильном расстоянии от корневой хорды и ограничена контуром крыла (верхний рисунок). Во втором, «официальном» случае, согласно ГОСТ, САХ крыла находится на том же расстоянии от корневой хорды, но «повисает в воздухе», так как не доходит до кромок крыла (нижний рисунок).

Рис. 1. Сравнение результатов расчета САХ эллиптического крыла по различным формулам

Как здесь быть, то есть каким расчетом пользоваться, я затрудняюсь рекомендовать. Для меня, например, непонятно от чего отсчитывать положение центра тяжести модели с таким крылом, если пользоваться «официальным» расчетом. Поэтому я оставляю за собой право опираться на собственные расчеты, которые, по моему скромному мнению, не противоречат физическому смыслу САХ, да и в практическом плане не создают неопределенности при определении центровки модели.

А каждый моделист, который столкнется на практике с этой дилеммой, должен будет ее разрешить самостоятельно. Важно заметить при этом, что для формы крыла в плане, образованного прямыми линиями (треугольник, трапеция, параллелограмм), результирующие формулы совпадают.

 





Последние сообщения форумаПоследние созданные темы
1) Авиамодели на 3D принтере
2) Чертежи дронов
3) Чертежи авиамоделей полукопий
4) МИГ 3 с размазом 1300мм
5) Юлиус Пердана и SHURIK-1960
6) Радиоуправляемые машины на 3D принтере
7) Чертежи зальников
8) Чертежи плосколетов
9) вырубает один двигатель
10) Самодельные модельные станочки
1) Чертежи дронов - подборка чертежей дронов для самостоятельной сборки
2) Радиоуправляемые машины на 3D принтере - чертежи и обзоры самодельных 3D печатных автомобилей
3) вырубает один двигатель
4) Чертежи радиоуправляемых лодок для 3D принтера - Лодки и корабли на радиоуправлении с чертежами для 3D печати
5) Приблуда для ракетных двигателей. - Имею в наличии 7 резьбовых сопел для р
6) Самолёт не взлетает
7) Чертежи двухмоторных авиамоделей - Чертежи самодельных самолетов с 2 и более двигателями
8) Один передатчик и два приемника.
9) Винт-Мотор-Регулятор-Аккум - Прошу помочь с выбором комплекта электроники для планера
10) Толстопузики - мультяшные авиамодели на радиоуправлении

Похожие статьи